Challenges of laser spectrum metrology in 248 and 193-nm lithography

نویسنده

  • Alex Ershov
چکیده

ABSTRACT Several approaches for high-resolution laser metrology have been discussed. One approach is to use a multiple-etalon spectrometer, which has two or more etalons with different FSRs. This approache can increase both the resolution at FWHM and the tails, as well as increase the spectrum range of the instrument. With the proper alignment, this multiple etalon configuration can produce an instrument whose resolution is equal to or better than the highest resolution etalon while still maintaining the FSR of the lower resolution etalon. In the configuration tested, a spectrometer designed for 248nm was constructed with a 2pm etalon and a 20pm etalon. The resolution of this multi-pass, multi-etalon (MPME) spectrometer produced an instrument function of 0.086pm FWHM and 0.339pm for the integrated 95% level over an integration range of 20pm. Another approach is to use a combination of diffraction grating and etalon based spectrometers. In this approach, the etalon provides high resolution for FWHM measurements, while diffraction grating provides accurate measurement of the spectrum tails over the wide scanning range. This idea has been tested with a 193 nm instrument.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review of

Introduction Lithography with 157-nm fluorine lasers is rapidly emerging as a viable technology for the post-193-nm era [1–3]. In fact, it may become the technology of choice for 100to 70-nm nodes. It is attractive for several reasons, the most important being that it is fundamentally an extension of optical lithography at the longer wavelengths of 248 and 193 nm. Therefore, it holds the promis...

متن کامل

Dissolution behavior of chemically amplified resist polymers for 248-, 193-, and 157-nm lithography

Dissolution behavior of chemically amplified resist polymers for 248-, 193-, and 157-nm lithography The aqueous base development step is one of the most critical processes in modern lithographic imaging technology. Sinusoidal modulation of the exposing light intensity must be converted to a step function in the resist film during the development process. Thus, in designing high-performance resi...

متن کامل

Cytotoxicity and mutagenicity of low intensity, 248 and 193 nm excimer laser radiation in mammalian cells.

The cytotoxicity of 193 and 248 nm excimer laser radiation was compared to that produced by a germicidal lamp (predominantly 254 nm) using Chinese hamster ovary cells (CHO), and a human diploid fibroblast line, AG-1522A. Excimer laser radiation at 248 nm (3.5 X 10(2) w/m2) and germicidal radiation (5.3 X 10(-5) w/m2) caused toxicity in both cell lines, with the AG-1522A cells (D37 = 7-8 J/m2) b...

متن کامل

Analysis of Frequency Leakage in Different Optical Paths of Nano-Metrology Systems Based on Frequency-Path Models

The drawing of frequency-path (F-P) models of optical beams is an approach for nonlinearity analysis in nano-metrology systems and sensors based on the laser interferometers. In this paper, the frequency-path models of four nano-metrology laser interferometry systems are designed, analyzed and simulated, including ...

متن کامل

Development of a 5 kHz solid-state 193 nm actinic light source for photomask metrology and review

Attaining acceptable yields in the manufacture of advanced photomasks will require higher performance optical metrology tools. Key to improving these tools is the development of new ultraviolet light illumination sources that operate at the actinic wafer exposure wavelength, which is now projected to be 193 nm for the 65 and 45 nm device nodes. The use of an actinic light source for metrology f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001